143 research outputs found

    Geometric aspects of the symmetric inverse M-matrix problem

    Full text link
    We investigate the symmetric inverse M-matrix problem from a geometric perspective. The central question in this geometric context is, which conditions on the k-dimensional facets of an n-simplex S guarantee that S has no obtuse dihedral angles. First we study the properties of an n-simplex S whose k-facets are all nonobtuse, and generalize some classical results by Fiedler. We prove that if all (n-1)-facets of an n-simplex S are nonobtuse, each makes at most one obtuse dihedral angle with another facet. This helps to identify a special type of tetrahedron, which we will call sub-orthocentric, with the property that if all tetrahedral facets of S are sub-orthocentric, then S is nonobtuse. Rephrased in the language of linear algebra, this constitutes a purely geometric proof of the fact that each symmetric ultrametric matrix is the inverse of a weakly diagonally dominant M-matrix. Review papers support our belief that the linear algebraic perspective on the inverse M-matrix problem dominates the literature. The geometric perspective however connects sign properties of entries of inverses of a symmetric positive definite matrix to the dihedral angle properties of an underlying simplex, and enables an explicit visualization of how these angles and signs can be manipulated. This will serve to formulate purely geometric conditions on the k-facets of an n-simplex S that may render S nonobtuse also for k>3. For this, we generalize the class of sub-orthocentric tetrahedra that gives rise to the class of ultrametric matrices, to sub-orthocentric simplices that define symmetric positive definite matrices A with special types of k x k principal submatrices for k>3. Each sub-orthocentric simplices is nonobtuse, and we conjecture that any simplex with sub-orthocentric facets only, is sub-orthocentric itself.Comment: 42 pages, 20 figure

    Factorization of CP-rank-3 completely positive matrices

    Get PDF
    A symmetric positive semi-definite matrix A is called completely positive if there exists a matrix B with nonnegative entries such that A=BB^T. If B is such a matrix with a minimal number p of columns, then p is called the cp-rank of A. In this paper we develop a finite and exact algorithm to factorize any matrix A of cp-rank 3. Failure of this algorithm implies that A does not have cp-rank 3. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product.Comment: 13 pages, 10 figure

    There are only two nonobtuse binary triangulations of the unit nn-cube

    Full text link
    Triangulations of the cube into a minimal number of simplices without additional vertices have been studied by several authors over the past decades. For 3n73\leq n\leq 7 this so-called simplexity of the unit cube InI^n is now known to be 5,16,67,308,14935,16,67,308,1493, respectively. In this paper, we study triangulations of InI^n with simplices that only have nonobtuse dihedral angles. A trivial example is the standard triangulation into n!n! simplices. In this paper we show that, surprisingly, for each n3n\geq 3 there is essentially only one other nonobtuse triangulation of InI^n, and give its explicit construction. The number of nonobtuse simplices in this triangulation is equal to the smallest integer larger than n!(e2)n!({\rm e}-2).Comment: 17 pages, 7 figure

    Generalization of the Zlámal condition for simplicial finite elements in Rd{\Bbb R}^d

    Get PDF
    summary:The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in 2d2d. In this paper we present and discuss its generalization to simplicial partitions in any space dimension

    Consolation : Trost Im Leid

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2849/thumbnail.jp

    Generalization of the Zlámal condition for simplicial finite elements in ℝ d

    Get PDF
    The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in 2d. In this paper we present and discuss its generalization to simplicial partitions in any space dimension
    corecore